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The stability of a spinning top with spherical support has been studied in
[1] by means of a Liapunov function constructed from the integral of energy
and the integrals of Zhelle and Chaplygin [2]. The stability of a recti-
linearly rolling disk with a gyroscope is investigated in [3]}, and the sta-
bility of arbitrary steady motions of the disk on a plane is considered in
[4]. For these studies the hypergeometric solutions of Appel and Korteveg
[2] were used. The stability of the steady motiona (in which the axis of
the body can be arranged vertically and horizontally) of a body with a gyro-
?E?pe, constrained by an arbitrary surface of rotation, is investigated in

Thereby integrals depending linearly on the angular velocities are indi-
cated and used, and the force function is assumed to be analytical, which
guarantees the analytic feature of the solution. For the construction of
the Liapunov function in the neighborhood of the steady motion the first two
terms of the series are computed.

In the present paper we obtain the necessary and sufficlent condition of
stabllity of all steady motions of a heavy homogeneous body constrained by
an arbitrary surface of rotation by using, for a Liapunov function, the sum
of the squares of integrals [5]. The investigation of the sign-definiteness
conditions for this function did not require an explicit computation of the
linear integrals.

We shall consider a heavy rigld body, rolling without slipping on a hori-
zontal plane and constrained by the surface of rotation which has the axis ¢.
Let the body be dynamically symmetrical with respect to the axie and let it
bear the rotor of a gyroscope mounted so that it can rotate freely on the
axis ( . We shall introduce two systems of coordinates, 0ry¥Z which is
fixed, and ¢#gn{ which is moblle with its origin at 4 , center of gravity
of the system. The axis ¢¢ 1s directed in the plane of the vertical merig-
lan perpendicularly to the axis @¢{ , and the axis (n perpendicularly to
the plane of the vertical meridian. We shall denote by &« the angle {(wv
of the axis of the body with the horilzontal tangent »» of 1its meridian ¢r;
by p, g, ", respectively the components of the angular velocity of the body
on the axes £, n, { . The principal moment of momentum of the gyroscope
around its axis 1s denoted by g ; according to the conditions of the prob-
lem g = const .
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Let ¥ be the mass of the system; 4 1s its moment of inertia about the
axes G@ » 6n ; B 1is the moment of inertia of the body alone , and &' that
of the gyroscope alone about the axis of symmetry. Let also (0, & (@), 1 (@)
be the coordinates of the point of contact of the body and the plane.

As it was shown by Chaplygin, three equations of motion can be obtained
for o # #7 1in the form [2

d . B dr
E-(PC—rE,)+P(I(Cma—Q)=—§M b7 da
dp Bt dr (‘7:“7) )
Agt——f—(b’r%—s—f—Apuna}q:—--g—“—t'
Furthermcre, the mechnical system under consideration has an integral of

2H = Ap? + Brt - M (p —rt) + [A+ M (5 + E?)] ¢ + 2Mgz (1) = const  (2)

Here 2z(x) 1s the height of the center of gravity of the body above the

horizontal plane . .
P E=zcosa-— 3’ sinq, {=-—rzsina—z"cosa

Calculating the time derivative of (2) and taking (1) into consideration,
we get the fourth equation of motion

d
(44 M (2 + %) Ti% =p(Br+s+ Apuna) + M (58 4 L) ¢* +

+ Mgz’ +- Mp(Luna —&) (pL —rE) {3)
Here €', n’, z’ are the derlvatives with respect to o .
For g=—da/dt=+0, the linear equations follow
d B dr dp Bf dr
2o (PE—rE)—p(Guna—8) = 337 55 AGy — (Brts+ dpany)=— 5= 4o
Solving these with respect to the derivatives we get
d dr
TZ*=(una+a1)P+azr+h1, Ja = p+ber + he “4)
where
‘ B(B/M + €24 CE’ (£+{ BE — AY
01=BC(;A+E'), a2 = (B/ ‘Z& SE)’ by = EA _)’ bzz__a_.._A_.._ (5)
B 1 M2 c AB
m=t e =5 A= S fan g Br>0
Let
P = a1 (a) 4 cags (@) + @3 (2}, r = e (o) 4 c2fa (@) 4 s () (6)

be the general solution of Equations (4).
Solving (6) with respect to the constants, we get two integrals [4]

r1(@) (P — @s) + Az (@) (r — ) = e, (@) (P— @3) +-pafa) (r—s) =ca (7)
Obviously, any integral F}p; p, r) of Equations (4) 1s an integral of
%1) because if Jr/da

the system « 0 , on the basis of (4), there follows
aF _ dF du_
dt da dt T

tial energy MNgzic possesses two continuous derivatives, which, in agree-
ment with the relations

¥ = zcosa —z'sina, {=—zsina—zcosa
' guarantees the boundedness of £’ and (’, and consequently the boundedness
of the coefficients of the system (4) on the interval (0<a< Yot i &8
(where ¢ 4s an arbitrary small quantity), and furthermore it ylelds an
existence condition for the function &5’ in the form given below. Thue 1is
removed the redquirement of the analytic feature of z{(a) given in [4],

Equations (1.1) and (1.3) have a partial solution
a=onx=Yan, ¢q=0, p=py, r=ro {8)

on the basis of ilg. All the following calculations are valid if the poten-
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if the constants p,, r., a, satisfy Equation

po?Artan o + (Biro + s) po -+ Mg’ () = 0 @)
Here £ (o) £ ()
0
=A—M2Em, B=A—|—1|r!z COS to (10)

The positiveness of the discriminant of Equation (9), quadratic with re-
spect to p, 1s glven by a condition of existence of the solutions (8)

D (o, ro) = (Birg 4 s)2 — &MgA1z’ (%)anctg >0 (11)

Let us consider the sta’bilit of the steady motion (8). The stability of
steady vertical rotations gn ) has been investigated in [3 and 4); the
stability of all rotations has been studied for the case of the disk in [6].

Let us assume that for the undisturbed motion (8) the integrals #, a,, 0a
take the values §F°, ¢,°, 0,°. Let us denote by x,, x; the variations®of
the variables p, r; by g, 8a, the variations of g, o and by dm, 80,5
50, the varlations of the functions g, e, . Now, let us consider the
sum of the squares of the integrals of the equations of the disturbed motion

(5] V = [8H (21, 72, q, 8a)]2 + [8cx (1, 22, ¢, O)]2 + (Bc2)?

This positive function willl be positive definite, if &F > O for those
values of the arguments when 6o,= 40z= 0 .

In other words, Equations &g, = Sgg= O yleld x,(q, Sa), =x3(g, 6a) ;5
substituting these values into the function 5y , we get

O0H (=1 (g, 6a), za (g, 6a), g, Sa) = 8H (g, ba)

If &7 (g, 6a) is a sign-definite function of its arguments then, and
only then, %he function vy 1s positive definite. In other words, the vari-
ation of g calculated for the constants o, °, 0o°, must be sign-definite.
In a practical calculation the knowledge of'an explicit form of the functions
cl( , 8a), ¢3 (xy, . - 1) 18 not indispensible, because the quantities

dla , dr/da entering the variation &5 are egual to the right-hand sides

Equations (4), taken on the steady solution ( Denoting the variation

Of 8H (c,° ¢,° ¢, 02) = §H!, we obtain

o o ° 2 F71 j° 2HL 1°
6Hl=[8H1(61,62.q; &1)] sa_}_l\:ﬂl_] qz‘i";_l_g—T—] (Ba)2 + Z =

da 2 | oq® da?
= f1ba + faq? + fs (Ba) + Z

where 2 are the terms of higher order and

alzhll

L3g 0a] =

By virtue of (4) and (8) we get

1 [ oH2 d dr , ., N
ST = [ap g+ 2r G Mg+ 1) a2 4 Mg+ M o —r8) (L — &+

+§—g§-—i %)] = p?Aitna + (Biro + s) po+ Mgz’ (%) = f1 ()

By virtue of (9) we conclude that 7,(ap) = 0 . As far as we have always

¥HL 7°
[ og? ] >0
then in ovder to insure the positive-definiteness of &y it 1s sufficient

to have 74> O , whereby that quantity can be computed by taking the deriva-
tive with respect to a, of the left-hand side of Equation (9), conaidering

Do 9o 88 functions of q, (i.e. on the basis of (4)). Making the indicated
computations, we get the stability condition in the fom

fa = (24,10 appy + Biry -+ s) [{tanao - a1) po + asre + m] -+ Aipe® sec? oy -
+ po? Ay ancgy 4 Bipo (b1po + bare -+ ha) 4 By'rops + Mgz (a0) >0 (12)
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in which the parameters of motion are related by Equation (9); 41, 4,' are
the derivatives with respect to q, of 4, and 5, . Since

d d
T H=gr @+ B =g (210 + 142 F 3] =0 for 40 (37 == fi =)

It 1s thereby clear, that the linear approximation equation for &q is
241

27 {a,) {8a)” + ?%{— f da =0

=

and for f,< O the solution (8) is unstable. lLet us consider some particu-
lar cases,

1. A body supported at -1 point on a
plane . In that case

E::O, E:_...a‘ alzbl::bzr::h250
ag=B/Ay, h=s/A, A=A-+M2 B =28
b Theiléx}:own ;ondition of stabllity for the regular precession of a rigid
0 w 1
dy a fixed polnt  p | o 4Mgdisinae >0
follows from (12) by virtue of (&),

2. Linearly rolling body . Iet 2 {g°) =0, i.e,
for o = a, the center of gravity of the body is above the point of contact,

For P,= 0, Equation (9) is automatically satisfied.
The inequality (12) takes the form
(Byre + ) (agre ~+ hy) + Mgz" (@) >0

In particular, for a wheel rollixﬁ linearly (a,= P,= O) the quantity s(g)
is an even function of o ans g£/{0} = 0), In %ﬂat case ({0) = 0, 2{0) = g
is the radius of a wheel and o = z{C) + #"{0) 1s the radius of curvature of

the meridian A, = A, B, = B+ Ma®
The condition of stability has the form [4]
(Bro - s}t (Bro - s -+ Ma?rg) — Mgad (1 —p /a)>0
3. Small regular precesslons of 8 top.
In that case o vam—8y (W) =0, ()b (Y=g, 5 (Yam) =l
Let 0(B,®) be a small quantity of the order of fat. From (1) there fol-

lowe that Jp cot g, 1s bounded, The conditlon of exlstence of arbiirary
small precessions $011ows from (11) and has the form

D (Yam, ro) = {[B + Mp? (1 — 1)) ro -+ 8}2 - 4Megpl [A + Mp? (1 — P1>0
The inequality {12), by making use of (9), becomes
D (Yan, ro) + O {fo) >0

Thus along any z{a) it 1is possible to chose an ¢ > O such that the
precessions for Yor — & < g < 1ym are stable.
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